
collective.jsonify
Release 1.0

July 13, 2015

Contents

1 How to install it 3

2 How to use it 5

3 Using the exporter 7

4 How to extend it 9

5 Code 11

6 Changelog 13
6.1 1.0 (2015-05-16) . 13
6.2 0.2 (2014-08-18) . 14
6.3 0.1 (2011-03-14) . 14

i

ii

collective.jsonify, Release 1.0

collective.jsonify exports your Plone content to JSON.

Many packages that export data from Plone have complicated dependencies, and so only work with Plone 3.0 or higher
(or not even with 3.0). collective.jsonify‘s only dependency is simplejson. It can be installed in any Plone
version as far back as:

• Plone 2.1 (or probably even Plone 2.0, but not tested)

• Zope 2.6.4 (with CMF rather than Plone)

• Python 2.2

The exported JSON is a collective.transmogrifier friendly format. Install collective.jsonify on a site you want
to export from, and setup an import transmogrifier pipeline on the site you’re importing to, using the blueprints in the
collective.jsonmigrator package.

Alternatively use the provided export script by adding it to

For more information see the documentation.

Warning This product may contain traces of nuts.

Author Rok Garbas, migrating for you since 2008

Source http://github.com/collective/collective.jsonify

Contents 1

http://en.wikipedia.org/wiki/JSON
http://pypi.python.org/simplejson
http://en.wikipedia.org/wiki/JSON
http://pypi.python.org/pypi/collective.transmogrifier
http://pypi.python.org/pypi/collective.jsonmigrator
https://collectivejsonify.readthedocs.org
http://www.garbas.si/labs/plone-migration
http://github.com/collective/collective.jsonify

collective.jsonify, Release 1.0

2 Contents

CHAPTER 1

How to install it

Install collective.jsonify for your Plone site, so that it is available in your Plone site’s PYTHONPATH, in-
cluding the simplejson package. The easiest way is to use buildout, as for any other modern Plone project. Other
options include:

1. Play with PYTHONPATH manually.

2. Use easy_install collective.jsonify or pip collective.jsonify which will also pull
simplejson.

Note: if you are working with python 2.2, then you will need to install a ‘tweaked branch of simplejson
<https://github.com/simplejson/simplejson/tree/python2.2>‘_.

Then run your Zope instance, go to the Zope root and create the necessary External Methods.

External method for exporting JSON files to the filesystem:

• export_content: - id: export_content - module name: collective.jsonify.json_methods -
function name: export_content

External methods for remote access from the importing Plone instance, using collective.jsonmigrator:

• get_item - id: get_item - module name: collective.jsonify.json_methods - function name:
get_item

• get_children: - id: get_children - module name: collective.jsonify.json_methods - function
name: get_children

• get_catalog_results: - id: get_catalog_results - module name: json_methods - function name:
get_catalog_results

It’s true that External Methods are not the nicest to work with and using them makes the setup a little long. But the
nice thing about External Methods is that they work in Plone 1.0 as well as in Plone 4.0, so you could potentially use
collective.jsonify to migrate from very old Plone versions.

3

collective.jsonify, Release 1.0

4 Chapter 1. How to install it

CHAPTER 2

How to use it

collective.jsonify is intended to be used in conjunction with collective.jsonmigrator. There you
can find an example transmogrifier pipeline that connects to the Plone site running collective.jsonify, crawls
it, extracts the content and imports it into the target site.

To see what collective.jsonmigrator is actually seeing you can issue “json views” on content you want to
explore:

http://localhost:8080/Plone/front-page/get_item
http://localhost:8080/Plone/front-page/get_children

The first gets all content out of front-page; the second lists all content contained inside this object and returns
their ids.

Finally, you can use get_catalog_results to catalog query results as a list of paths. To use it, you need to hand
your query as a base64’ed Python dict string. Here’s an example of doing this with curl:

curl --data catalog_query=$(echo '{"Type": "Slide"}' | base64 -w0) \
'http://localhost:8080/Plone/portal_catalog/get_catalog_results

5

collective.jsonify, Release 1.0

6 Chapter 2. How to use it

CHAPTER 3

Using the exporter

Instead of doing on-the-fly exporting with collective.jsonmigrator, you can also export your site’s content to json files
for multiple re-use. This is done by the export script and the external method, as described above. You can also batch-
export the contents, if you get out of memory on your exporting machine. Here is an example on how to configure the
export script for using as an external method:

from collective.jsonify.export import export_content as export_content_orig

def export_content(self):
return export_content_orig(

self,
basedir='/tmp', # export directory
extra_skip_classname=['ATTopic'],
batch_start=5000,
batch_size=5000,
batch_previous_path='/Plone/last/exported/path' # optional, but saves more memory because no item has to be jsonified before continuing...

)

To start the export, just open the url in your browser:

http://localhost:8080/Plone/export_content

7

collective.jsonify, Release 1.0

8 Chapter 3. Using the exporter

CHAPTER 4

How to extend it

We try to cover the basic Plone types to export useful content out of Plone. We cannot predict all usecases, but if you
have custom requirements it’s easy to extend functionality. You have a few options:

• You can pass additional wrappers to the get_item External Method. Of course you have to have these wrap-
pers in your PYTHONPATH:

http://localhost:8080/Plone/front-page/get_item?additional_wrappers=myproject.wrapper1.Wrapper;myproject.wrapper2.Wrapper

• If you need something completely custom, you could override the get_item and get_children External
Methods.

9

collective.jsonify, Release 1.0

10 Chapter 4. How to extend it

CHAPTER 5

Code

11

collective.jsonify, Release 1.0

12 Chapter 5. Code

CHAPTER 6

Changelog

6.1 1.0 (2015-05-16)

• Let the wrapper test correctly for zope.interface and Interface interfaces. [thet]

• In the wrapper class, call the value in decode, if it’s a callable. [thet]

• When serializing datetime, date, time or DateTime properties, just use the unicode representation which can be
parsed. [thet]

• When serializing values, if there is no special handler for a field type, just try to unicode the value. [thet]

• Fix export of defaultPage and layout. Before, always the defaultPage was set now layout is always set and
defaultPage only, if there is one defined. [thet]

• Handle plone.formwidget.geolocation Dexterity field types. [thet]

• Check, if wrapper methods for Zope/CMF objects are Zope/CMF only objects by testing for Archetypes and
Dexterity first. [thet]

• Add BlobField for get_archetypes_fields. [thet]

• Don’t try to convert ints to unicode in get_properties(). [djowett]

• Zope 2.6 support for collective.jsonify. [djowett]

• Fix setup.py to work with Python 2.2. [djowett]

• Add error type to tracebacks. [djowett]

• Fix read of NamedBlobImage, NamedFile and NamedBlobFile in dexterity objects. [djowett]

• Fix read of field for unicode transcoding in dexterity objects. [djowett]

• Make archetypes.schemaextender support more generic and handle probably most use cases. [thet]

• Add _directly_provided export field for the object’s directly provided interfaces. [thet]

• Add json_methods module to own Extension folder, which makes it automatically available and unnecessary to
add it to the instance’s Extension folder. [thet]

• Don’t skip ComputedField fields, but just export their computed value. Better skip them in your transmo-
grifier import pipeline. [thet]

• Allow a skip_callback function to be passed to the export_content function. It evaluates to True, if
the current visited item should be excluded from exporting. [thet]

• Export a content’s references as list of UID values. [thet]

13

collective.jsonify, Release 1.0

• Declare the content_type of a field’s value only for TextField and StringField. [thet]

• Add example buildouts for Plone 2.1, 2.5, 3 and 4. [thet]

• Declare base64 encoding for _datafield_FIELDNAME structures. This is used to correctly decode in trans-
mogrify.dexterity. [thet]

• Add export module from collective.blueprint.jsonmigrator and modify to use collective.jsonify
wrapper. Use it in Plone 2.1 by adding it as external method. [thet]

• PEP 8. [thet]

• Fixing local roles export. [realefab]

• Make ATExtensionFields serializable. [jsbueno]

• Fixes exporting of Image types that use ATBlob. [jsbueno]

6.2 0.2 (2014-08-18)

• Support p.a.collection QueryField. [jone]

• Dexterity support. [djowett]

• Add Blob fields support. Use specific methods to retrieve filename, content type and size. [gborelli]

• Add _get_at_field_value to wrappe.Wrapper in order to use accessor method for Archetypes fields. [gborelli]

• @@jsonify view added. See README_JSONIFY_VIEW.rst for more [pieretti]

6.3 0.1 (2011-03-14)

• documentation added [garbas]

• collection of external methods from collective.blueprint.jsonmigrator and
collective.sync_migrator. [garbas]

• initial release [garbas]

14 Chapter 6. Changelog

	How to install it
	How to use it
	Using the exporter
	How to extend it
	Code
	Changelog
	1.0 (2015-05-16)
	0.2 (2014-08-18)
	0.1 (2011-03-14)

